The gamma secretase inhibitor AL101 combined with other drugs for dual targeting of Notch dysregulated tumors

Renata Ferrarotto1, Rami Rauch1, Tal Lebovitch1, Alina Shitrit2, Elad Herz2, Russell Walker3, Alan L. Ho4, Joel Kaye4

1Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; 2Ayala Pharmaceuticals, Rehovot, Israel; 3Department of Medicine, MSKCC, New York, NY

Selection of Compounds for In Vivo Combo Studies

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Ratiosame</th>
<th>Drug Compound</th>
<th>Dose & Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch</td>
<td>Genomic hallmark of Notch dependency for ACC & breast cancer</td>
<td>AL101</td>
<td>3mg/kg PO QD</td>
</tr>
<tr>
<td>HDAC</td>
<td>Genomic hallmark of HDAC dependency for ACC & breast cancer</td>
<td>Vorinostat (SAHA)</td>
<td>3mg/kg IP QD</td>
</tr>
<tr>
<td>Bcl2</td>
<td>Notable biomarker of differentially expressed pathways in ACC</td>
<td>Venetoclax (ABT-199)</td>
<td>50mg/kg PO QD</td>
</tr>
<tr>
<td>CDK4/6</td>
<td>Notable biomarker of differentially expressed pathways in ACC</td>
<td>Palbociclib (PD0332991)</td>
<td>60mg/kg PO QD</td>
</tr>
<tr>
<td>FGFR</td>
<td>Notable biomarker of differentially expressed pathways in ACC</td>
<td>Erlotinib (AZD4805)</td>
<td>25mg/kg PO QD</td>
</tr>
</tbody>
</table>

Table 1: Compounds selected for in vivo combination studies. The doses were selected after completing a 14-day tolerability study in non-tumor bearing Nude mice, comparing each drug alone to combination with AL101 for the effect on body weight and survival. Combinations were purchased at LC Labs or MedChemExpress.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.

Acknowledgements

We would like to thank Mr. Jeff Kaufmann and Dr. Nicole Spardy from the ACC Research Foundation (ACCRF) for their contributions to study planning.

Conclusions

- Additive or synergistic activity of GSI combined with agents of various mechanisms of action, indicates that cross-talk between signaling pathways may increase the effectiveness of AL101 in recurrent/metastatic ACC regardless of Notch mutational status.
- This may also be a promising approach for expansion to other cancer indications in which Notch is dysregulated.